GCSE (9-1) Mathematics
 J560/04 Paper 4 (Higher Tier)

Thursday 24 May 2018 - Morning

Time allowed: 1 hour 30 minutes

You may use:

- a scientific or graphical calculator
- geometrical instruments
- tracing paper

INSTRUCTIONS

- Use black ink. You may use an HB pencil for graphs and diagrams.
- Complete the boxes above with your name, centre number and candidate number.
- Answer all the questions.
- Read each question carefully before you start to write your answer.
- Where appropriate, your answers should be supported with working. Marks may be given for a correct method even if the answer is incorrect.
- Write your answer to each question in the space provided. Additional paper may be used if required but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the barcodes.

INFORMATION

- The total mark for this paper is 100.
- The marks for each question are shown in brackets [].
- Use the π button on your calculator or take π to be 3.142 unless the question says otherwise.
- This document consists of 20 pages.

Answer all the questions.
1 (a) The ratio 2 centimetres to 5 metres can be written in the form $1: n$.
Find the value of n.

$$
\begin{array}{cl}
2 \mathrm{~cm}: 500 \mathrm{~cm} & 1 \mathrm{~m}=100 \mathrm{~cm} \\
1: 250 & \text { Don't need to include units. } \\
n=250 &
\end{array}
$$

(a) $n=$ 250
(b) Jay, Sheila and Harry share $£ 7200$ in the ratio $1: 2: 5$.

How much does Harry receive?
$1+2+5=8$ total parts
$7200 \div 8=900 \quad 900$ is the value of 1 part.
Harry gets 5 parts, so he gets $900 \times 5=£ 4500$
(b) £.... 4500

2 Given that $y^{18} \div y^{6}=y^{k}$, find the value of k.

$$
\begin{aligned}
y^{18} \div y^{6} & =y^{18-6} \quad x^{a} \div x^{b}=x^{a-b} \\
& =y^{12} \\
K & =12
\end{aligned}
$$

$$
\begin{equation*}
k=\ldots \ldots \tag{1}
\end{equation*}
$$

3 (a) (i) Write 120 as a product of its prime factors.

(a)(i)
(ii) The lowest common multiple (LCM) of x and 120 is 360 .

Find the smallest possible value of x.

(ii)

9
(b) Two numbers, A and B, are written as a product of prime factors.

$$
A=2^{4} \times 3^{2} \times 7^{2} \quad B=2^{3} \times 3 \times 5 \times 7
$$

Find the highest common factor (HCF) of A and B.

Common factors are circled.

HCF = A AND B (the prime factors that are common.)

$$
\begin{aligned}
& =2 \times 2 \times 2 \times 3 \times 7 \\
& =168
\end{aligned}
$$

(b)

168 \qquad

4 Lee wishes to find out if there is a relationship between a person's age and the time it takes them to complete a puzzle.

Lee decides to conduct an experiment.
She asks 12 people to complete the puzzle.
She records each person's age and the time taken to complete the puzzle.
(a) Make one criticism of Lee's method.

Her sample size is too small.
(b) This scatter diagram shows the results for ten of the people in Lee's experiment.

Here are the other two results.

Age (years)	47	60
Time (seconds)	21	34

Plot these results on the scatter diagram.
(c) What type of correlation is shown in the scatter diagram?

As age increases, so does time, so correlation is positive.
(c)
(d) Estimate the time it would take a person aged 35 to complete the puzzle.

Show your working to justify your answer.
Draw a line of best fit. Find the time when age is 35 years.
(d)

12 seconds
(e) Lee says that at least 80% of the 12 people completed the puzzle in under 30 seconds.

Is Lee correct?
Show working to support your answer.

$$
\begin{aligned}
& \frac{9}{12} \times 100=75 \% \\
& 75 \%<80 \% \text { so Lee is incorrect. }
\end{aligned}
$$

5 The scale diagram below shows two cities, P and Q.

A plane departs from P at 0947 and arrives at Q at 1207.
(a) Work out the average speed, in kilometres per hour, of the plane.

$11.8 \mathrm{~cm}=11.8 \times 12.5 \mathrm{hm}$
 $=1475 \mathrm{hm}$

09:47 to 12:07 is 2 hours and 20 minutes
20 minutes $=\frac{20}{60}=\frac{1}{3}$ hours
speed $=\frac{\text { distance }}{\text { time }}$
$=\frac{1475}{23}$
$=632 \mathrm{hmhour}$
(a) \qquad 632
km/h
(b) Give one reason why your answer may be inaccurate.

The plane may not have flown in a straight line

PhysicsAndMathsTutor.com

7
6 Triangles \mathbf{A} and \mathbf{B} are drawn on a coordinate grid.

(a) Describe fully the single transformation that maps triangle \mathbf{A} onto triangle \mathbf{B}.

Reflection in $y=x$.
(b) Triangle \mathbf{A} can also be mapped onto triangle \mathbf{B} using a combination of two transformations:

- a transformation T, followed by
- a reflection in the line $x=0$.

Describe fully transformation T .
T: rotation about $(0,0), 90^{\circ}$ anti-clochwise.

7 The scale diagram below shows towns, A, B and C .
Line $A B$ represents the road from A to B and line $A C$ represents the road from A to C.
A shopping centre is to be built so that it is

- nearer to the road from A to B than the road from A to C,
- less than 14 km from town C.
(a) Using construction, shade the region where the shopping centre could be built. Show all your construction lines.

Scale: $1 \mathbf{c m}$ represents $\mathbf{2 k m}$
Find angle bisector of $A B$ and $A C$.
Draw an arc about C, radius 7 cm .

[5]
(b) Explain why the region found in part (a) may not be an appropriate site for the shopping centre.

The roads may not be straight
$8 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ and D are points on the circumference of a circle, centre O .

Not to scale

Angle CAD $=28^{\circ}$ and $C D=6.4 \mathrm{~cm}$.
$B D$ is a diameter of the circle.
Calculate the area of the circle.
$C \hat{C B D}=28^{\circ}$
$B C \overline{C D}=90^{\circ}$
Angles in the same segment are equal.
Angle subtended at circumference by a semicircle is 90 :
$\triangle B C D$ is right-angled.
$\sin \theta=\frac{O}{H}$
$\sin 28=\frac{6.4}{B D}$
$\frac{6 \cdot 4}{\sin 28}=B D$

$$
B D=13.6=\text { diameter }
$$

radius $=$ diameter $\div 2=13.6 \div 2=6.8$
area $=\pi r^{2}=\pi \times 6.8^{2}=145.3 \mathrm{~cm}^{2}$

9 The dimensions, in centimetres, of this rectangle are shown as algebraic expressions.

Not to scale
$2 x-6 y-3$
Rectangle: vertical sides are

$$
\begin{aligned}
& -3 x(5 x-y-8=3 x+5 y+4 \\
& -3 x(2 x-y-8=5 y+4 \\
& -5 y(2 x-6 y-8=4 \\
& +8(2 x-6 y=12 \\
& \begin{array}{l}
2 x-6 y-8=4 \\
2 x-6 y=12 \\
\div 2\binom{2}{x-3 y} \\
3 x+y-4=2 x-6 y-3
\end{array} \\
& \begin{aligned}
+8(2 x-6 y-8 & =4 \\
\div 2(2 x-6 y & =12 \\
x-3 y & =6 \text { (1) } \\
3 x+y-4 & =2 x-6 y-3
\end{aligned} \\
& -2 x\left(\begin{array}{l}
3 x+y-4=2 x-6 y \\
x+y-4=-6 y-3
\end{array}\right. \\
& +6 y C_{x}+7 y-4=-3 \\
& +4(x+7 y=1 \text { (2) }
\end{aligned}
$$

$$
3 x+5 y+4
$$ same length and horizontal sides are same length.

Work out the length and width of the rectangle.

$$
\begin{aligned}
& \text { (1)-(2): } \begin{aligned}
x-3 y & =6 \\
-x+7 y & =1 \\
\div-10 y & =5 \\
y & =-\frac{1}{2}
\end{aligned} \\
& \begin{aligned}
\div(-10)\left(\begin{array}{rl}
-10 y & =5 \\
y & =-\frac{1}{2} \\
x-3\left(-\frac{1}{2}\right) & =6 \text { sub } y=-\frac{1}{2} \\
-\frac{3}{2} \int^{x+\frac{3}{2}} & =6 \quad \text { into } \\
x & =\frac{9}{2}
\end{array}\right.
\end{aligned} \\
& \begin{array}{rlr}
x-3\left(-\frac{1}{2}\right)=6 & \text { sub } y=-\frac{1}{2} \\
-\frac{3}{2} C^{x+\frac{3}{2}}=6 & \text { into (1). } \\
x & =\frac{9}{2} &
\end{array} \\
& \begin{array}{rlr}
x-3\left(-\frac{1}{2}\right) & =6 & \text { sub } y=-\frac{1}{2} \\
-\frac{3}{2} C^{x+\frac{3}{2}} & =6 & \text { into (1). } \\
x & =\frac{9}{2} &
\end{array} \\
& \text { width }=3 \times \frac{9}{2}+\left(-\frac{1}{2}\right)-4=9 \mathrm{~cm} \\
& \text { length }=5 \times \frac{9}{2}-\left(-\frac{1}{2}\right)-8=15 \mathrm{~cm}
\end{aligned}
$$

10 60\% of the people in a town are males.
20% of the males are left-handed.
21.6% of all the people are left-handed.
Work out the percentage of the people who are not male who are left-handed.

	Right-Handed	Left-Handed	Total
Male	\nearrow	12%	60%
Not Male	\nearrow	24%	40%
Total	\nearrow	21.6%	100%

$100-21.6=78.4 \%$ right-handed, not male
$0.6 \times 0.2=0.12 \%$
$21.6-\mathcal{1 2}=9.6 \%$
$9.6 \div 40=24 \%$
$11 y$ is directly proportional to the square of x.
Find the percentage increase in y when x is increased by 15%.
$y \propto x^{2}$
$y=K x^{2}$ where K is a constant
$h(1.15 x)^{2}=1.3225 \mathrm{~K} x \quad$ increased by 15% is the same as 115% of x.

$$
=1.3225 \mathrm{y} \quad 115 \%=\frac{115}{100}=1.15
$$

32.55%

32.25

\%
[4]

12 The value of a car, $£ V$, is given by

$$
V=16500 \times 0.82^{n}
$$

where n is the number of years after it is bought from new.
(a) Write down the value of the car when new.
$V=16500 \times 0.82^{\circ}$
$= \pm 115000 \quad x^{\circ}=1$
(a) $£ \quad 16500$
(b) Write down the annual percentage decrease in the value of the car.

$$
\begin{align*}
& 100-82=18 \% \\
& \text { total } 0.82=\frac{82}{100}=82 \% \quad \text { (b) } \ldots \quad 18 \tag{b}
\end{align*}
$$

(c) Show that the value of the car after 4 years is less than half its value when new.
$V=16500 \times 0.22$
$=£ 7460.01$
$\frac{7460 \cdot 01}{16500}=0.452$
$0.452<0.5$

13 A menu has

- 6 starters
- 10 main dishes
- 7 desserts.
(a) A three-course meal consists of a starter, a main dish and a dessert.

How many different three-course meals are possible?
$6 \times 10 \times 7=420$
Multiply to find number of combinations.
(a)
(b) A two-course meal consists either of a starter with a main dish, a starter with a dessert or a main dish with a dessert.

Show that there are 172 possible different two-course meals.
[3]
(starter AND main) OR (starter AND dessert) OR (main AND desert)
$(6 \times 10)+(6 \times 7)+(10 \times 7)=172$

14 The Venn diagram shows the number of students studying Mathematics (M) and the number of students studying Physics (P) in a college.
35 students do not study either subject.

(a) The total number of students is 121 .

Find the value of x.

$$
\begin{aligned}
& x+(41+18+35)=121 \text { total number of students } \\
& x=121-(94)
\end{aligned}
$$

$$
=27
$$

(a) $x=$ 27
(b) One of the 121 students is selected at random.

Find the probability that this student studies Mathematics, given that they study Physics.

(b)

15 (a) Write $x^{2}-8 x+25$ in the form $(x-a)^{2}+b$.

$$
=x^{2}-8 x+25
$$

$=(x-4)^{2}-4^{2}+25$ halve the b term
$=(x-4)^{2}-16+25$ remove the extra product a^{2}

$$
=(x-4)^{2}+9
$$

(a)

$$
(x-4)^{2}+9
$$

\qquad
(b) Write down the coordinates of the turning point of the graph of $y=x^{2}-8 x+25$.

(b) \qquad
\qquad
(c) Hence describe the single transformation which maps the graph of $y=x^{2}$ onto the graph of $y=x^{2}-8 x+25$.
Translated by the vector $\binom{4}{9}$
\qquad
\qquad
4 units right, 9 units up.
The turning point of $y=x$ is $(0,0)$ so the graph has moved 4 units across and 9 units up.

16 Solve by factorisation.

$$
3 x^{2}+11 x-20=0
$$

$$
\begin{aligned}
& 3 x^{2}+11 x-20=0 \\
& 3 x^{2}+15 x:-4 x-20=0 \\
& 3 x(x+5)-4(x+5)=0 \\
& (3 x-4)(x+5)=0 \\
& 3 x-4=0 \text { so } x=\frac{4}{3} \\
& x+5=0 \quad \text { so } x=-5 \\
& \text { Split the b-term. } \\
& \text { Factorise each part. } \\
& \text { Brackets must be the same. }
\end{aligned}
$$

Two numbers must multiply to make the c term (-20) and add to make the b term (11).

$$
x=\ldots \ldots .
$$

17 For each graph below, select its possible equation from this list.
$y=\frac{1}{x}$
$y=\cos x$
$y=x^{2}$
$y=\left(\frac{1}{2}\right)^{x}$
$y=2^{x}$
$y=\sin x$
$y=2^{-x}$
$y=\tan x$
$y=x^{3}$
$y=\frac{1}{x^{2}}$
(a)

(a) $y=$ $\frac{1}{x} \quad \begin{array}{r}\text { Reciprocal } \\ \text { graph. }\end{array}$
(b)

(b) $y=\ldots \ldots \ldots \sin x$ \qquad Sine graph.
(c)

(c) $y=$
2^{x}
Exponential graph.
[3]

18 Calculate the area of this triangle.

Not to scale

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& 3.9^{2}=6.4^{2}+5.8^{2}-(2 \times 6.4 \times 5.8 \times \cos A) \\
& \left.\begin{array}{l}
15.12=74.6-74.24 \cos A \\
-59.39=-74.24 \cos A \\
\cos A=-79.39 \div-74.24
\end{array}\right) \div-74.24 \\
& \left.\cos ^{-1}\left(\frac{-59.39}{-74.24}\right)=A\right) \cos ^{-1} \text { both sides } \\
& A=36.9^{\circ} \\
& \text { area }=\frac{1}{2} a b \operatorname{Sin} C \\
& =\frac{1}{2} \times 5.8 \times 6.4 \times \sin 36.9 \\
& =11.1 \mathrm{~cm}^{2}
\end{aligned}
$$

19 Here are the first four terms of a quadratic sequence.

$$
\begin{array}{llll}
0 & 9 & 22 & 39
\end{array}
$$

The nth term can be written as $a n^{2}+b n+c$.
Find the values of a, b and c.

nth term:	0	9	22	39	
$2 n^{2}:$	2	8	18	32	
difference:	-2	1	4	3	3

nth term:	0	9	22	39
$2 n^{2}+3 n:$	5	14	27	44
difference:	-5	-5	-5	-5

$$
2 n^{2}+3 n-5
$$

$$
\begin{aligned}
& a=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
& b=\ldots \ldots \ldots .3 \\
& c=\ldots \ldots \ldots \ldots .-5
\end{aligned}
$$

20 Solve this equation, giving your answers correct to 1 decimal place.

$$
\frac{5}{x+2}+\frac{3}{x-3}=2
$$

$$
\frac{5}{x+2}+\frac{3}{x-3}=2
$$

$$
\frac{5(x-3)+3(x+2)}{(x+2)(x+3)}=2
$$

$$
\begin{aligned}
& 5(x-3)+3(x+2)=2(x+2)(x-3) \\
& 5 x-15+3 x+6=2\left(x^{2}-x-6\right) \\
& 8 x-9=2 x^{2}-2 x-12
\end{aligned} \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
2 x^{2}-10 x-3=0 \quad\left(a x^{2}+b x+c=0\right)
$$

$$
x=\frac{-(-10) \pm \sqrt{(-10)^{2}-4 \times 2 \times(-3)}}{2 \times 2}
$$

$$
=5.3,-0.3
$$

$$
x=5.3 \text { or } x=-0.3
$$

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.
For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.
OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

